Here, we report the draft genome sequence of *Acidocella* sp. strain MX-AZ02, an acidophilic and heterotrophic alphaproteobacterium isolated from a geothermal lake in western Mexico.

Acidocella sp. strain MX-AZ02 was isolated from a naturally acidic (pH 2.3) and heavy metal-containing shallow lake in the Los Azufres National Park in western Mexico. The *Acidocella* genus comprises aerobic, acidophilic, Gram-negative bacteria belonging to the class Alphaproteobacteria (1). *Acidocella* relatives have been identified both in natural and acid mine drainage environments exhibiting high heavy-metal levels (2–6). *Acidocella* has also been detected among *Sphagnum* moss microbiota growing under varying acidic conditions (7, 8). Currently, the genome contains three reference strains isolated from acidic environments (9–11).

DNA was isolated from *Acidocella* sp. MX-AZ02, which yields smooth, round, and translucent colonies on DSMZ medium 35a. The organism is maintained at the Center of Genomic Sciences at the Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico. The reads were assembled *de novo* using Newbler assember 2.3 (454 Life Sciences). The assembly produced 303 contigs with 3-kb inserts. The reads were assembled *de novo* using Newbler assembler 2.3 (454 Life Sciences). The assembly produced 303 contigs of >500 bp each with an N50 size of 22.12 kb. Nine scaffolds were generated containing 250 contigs. Genome annotation was performed using the NCBI Prokaryotic Genomes Automatic Annotation Pipeline (PGAAP) (http://www.ncbi.nlm.nih.gov/genomes/static/Pipeline.html).

The genome of *Acidocella* sp. MX-AZ02 was estimated to be 3.6 Mbp with a G+C content of 61.4% and it carried 3,553 open reading frames (ORFs). The 16S rRNA gene phylogeny indicated that the strain is closely related to type strains *Acidocella facilis* PW2, *Acidocella aluminidurans* AL46, and *Acidocella amnilytica* 101, sharing 99.86%, 99.50%, and 97.93% sequence identities, respectively, over 1,407 bp.

Metal resistance determinants have been identified for *Acidocella* strains (12, 13, 14). The *Acidocella* sp. MX-AZ02 genome codes for arsenic, chromium, copper, and cobalt–zinc–cadmium transporters, as well as heavy-metal sensor signal transduction histidine kinases and chaperones. Carboxic anhydrases were also encoded, which may provide a means to cope with the low CO2 levels in acidic waters.

One *Acidocella* strain was shown to metabolize fructose from medium containing cell-free algal exudates, but it was unable to metabolize mannitol or glucose (15). *Acidocella* sp. MX-AZ02 may use glucose in the isolation medium as a carbon source. An acidophilic and abundant unicellular green alga was recently characterized from the same lake from which *Acidocella* sp. MX-AZ02 was isolated (16). Possibly, *Acidocella* sp. MX-AZ02 utilizes organic compounds from the alga, as was proposed previously for acidophilic microalgae and acidophilic heterotrophic bacteria (15).

The draft genome of *Acidocella* sp. MX-AZ02 will facilitate the identification of metal resistance determinants and may help us understand bacterial–algal interactions. This is the first isolated bacterial genome for an *Acidocella* strain and is the first sequenced bacterial genome from the Los Azufres National Park.

Nucleotide sequence accession number. The draft of the genome sequence is deposited at DDBJ/EMBL/GenBank under the accession no. AMPS00000000.

ACKNOWLEDGMENTS

We thank the Next Generation Sequencing unit from Macrogen Inc. for pyrosequencing. The Comisión Federal de Electricidad (CFE) personnel provided a sampling permit.

This research was supported by PAPIIT IN205412 from DGAPA, UNAM. L.E.S.G. received a PhD scholarship from CONACYT (Mexico) under the Programa de Doctorado en Ciencias Biomédicas from UNAM. L.E.S.G. had a ‘Beca Mixta’ from CONACYT and a fellowship from PAEP during a research internship at the Danish Archaea Centre.

REFERENCES

