The principal findings from its annotation, which might shed light onto the enzymatic machineries that are involved in its production of biogenic amines. 150,234) and a G+C content of 42.6%. It contains 1,519 predicted coding sequences, two 16S-23S-5S operons, and 55 tRNAs. No plasmids were detected in the sequenced DNA.

Lactobacillus sp. strain 30a (Lactobacillus saerimneri) produces the biogenic amines histamine, putrescine, and cadaverine by decarboxylating their amino acid precursors. We report its draft genome sequence (1,634,278 bases, 42.6% G+C content) and the principal findings from its annotation, which might shed light onto the enzymatic machineries that are involved in its production of biogenic amines.

The draft genome has 1,634,278 bases in 24 contigs (N50, 150,234) and a G+C content of 42.6%. It contains 1,519 predicted coding sequences, two 16S-23S-5S operons, and 55 tRNAs. No plasmids were detected in the sequenced DNA. Lactobacillus sp. strain 30a was attributed to the species Lactobacillus saerimneri on the basis of 16S rRNA gene analysis (>99% sequence identity with that of L. saerimneri).

The gene encoding the histidine decarboxylase is surrounded by the three genes typically encountered in the histamine-producing pathway in LAB (13). The ornithine decarboxylase gene stands alone, in contrast to in other LAB strains, where it is associated with an ornithine/putrescine exchanger gene (14, 15). Lactobacillus sp. 30a also contains a biosynthetic ornithine decarboxylase, which may account for its intracellular production of putrescine (15). A third gene that codes for a putative ornithine decarboxylase is also present and is associated with a predicted amino acid transporter; this likely represents the lysine decarboxylase pathway genes (unpublished results).

Nucleotide sequence accession numbers. This Whole Genome Shotgun project has been deposited at DDBJ/EMBL/GenBank under the accession no. ANAG00000000. The version described in this article is the first version, ANAG01000000.

ACKNOWLEDGMENTS

This work was funded by the EU commission in the framework of the BIAMFOOD project (Controlling Biogenic Amines in Traditional Food Fermentations in Regional Europe) (project no. 211441).

REFERENCES