Members of the genus *Rhodococcus* possess a wide range of metabolic capabilities applicable for biodegradation of diverse environmental pollutants (1, 2) and for various biotransformations (3, 4). The strain *Rhodococcus erythropolis* CCM2595 (NCIB8147; JCM3132; ATCC 11048) was isolated from soil. Originally, it was classified as a strain of the species *Jensenia canicruria* (5). Later, it was reclassified into the species *Rhodococcus erythropolis* (6). *R. erythropolis* CCM2595 has been shown to utilize phenol, catechol, resorcinol, hydroxybenzoate, hydroquinone, p-chlorophenol, p-nitrophenol, pyrimidines, and sterols (7, 12). The functions of the predicted protein-coding genes were assigned by the PGAAP pipeline (http://www.ncbi.nlm.nih.gov/genome/annotation_prok/). The annotation results were combined and verified within Artemis (24). In total, 5,830 predicted coding regions (CDSs), 12 rRNAs, 53 tRNAs, 1 tmRNA, and 5 ncRNAs were predicted and annotated.

Based on our results, we anticipate that *R. erythropolis* strain CCM2595 will display rich and complex metabolic capabilities, far beyond the utilization of benzene derivatives or catechol metabolism originally associated with this strain (7, 12).

Nucleotide sequence accession numbers. The genome sequences were deposited at DDBJ/EMBL/GenBank under the accession numbers CP003761 (chromosome) and CP003762 (plasmid pRECF1).

ACKNOWLEDGMENTS

This project was funded by the Czech Science Foundation (project 13-28283S), the Institute of Molecular Genetics of the ASCR (RVO 68378050), the Czech Ministry of Education, Youth and Sports (AROMAGEN project 2B08062), and the Institute of Microbiology of the ASCR (RVO 61388971).

REFERENCES

