Complete Genome Sequence of *Anaeromyxobacter* sp. Fw109-5, an Anaerobic, Metal-Reducing Bacterium Isolated from a Contaminated Subsurface Environment

C. Hwang,a A. Copeland,b S. Lucas,b A. Lapidusb,c K. Barryd T. Glavina del Riod,e E. Dalindi,f H. Ticed,f S. Pitluck,b D. Sims,b,c T. Brettin,b D. C. Bruced,c J. C. Detter,gh C. S. Han,bi J. Schmutz,b,f F. W. Larimer,b,f M. L. Land,b,f L. J. Haused,i N. Kyripides,b A. Lykidisd,b P. Richardson,bi A. Belieav,b R. A. Sanford,d F. E. Löffefferd,d M. W. Fieldsa,b,e

Center for Biofilm Engineering, Montana State University, Bozeman, Montana, USA; DOE Joint Genome Institute, Walnut Creek, California, USA; Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, USA; Department of Geology, University of Illinois, Urbana-Champaign, Illinois, USA; Department of Microbiology, Department Of Civil and Environmental Engineering, University of Tennessee, Knoxville, Tennessee, USA; Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA; Department of Microbiology and Immunology, Montana State University, Bozeman, Montana, USA; National Center for Genome Resources, Santa Fe, New Mexico, USA.

* Present address: A. Lapidus, Theodosius Dobzhansky Center for Genome Bioinformatics, St. Petersburg State University, St. Petersburg, Russian Federation, and Algorithmic Biology Lab, St. Petersburg Academic University, St. Petersburg, Russia; E. Dalin, Synthetic Genomics, La Jolla, California, USA; D. Sims, Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, Huntsville, Alabama, USA; D. C. Bruce, J. C. Detter, and C. S. Han, Los Alamos National Laboratory, Los Alamos, New Mexico, USA; F. W. Larimer, M. L. Land, and L. J. Hauser, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA.

We report the genome sequence of *Anaeromyxobacter* sp. Fw109-5, isolated from nitrate- and uranium-contaminated subsurface sediment of the Oak Ridge Integrated Field-Scale Subsurface Research Challenge (IFC) site, Oak Ridge Reservation, TN. The bacterium’s genome sequence will elucidate its physiological potential in subsurface sediments undergoing in situ uranium bioremediation and natural attenuation.

The Oak Ridge Integrated Field-Scale Subsurface Research Challenge (IFC) site encompasses a U(VI)-contaminated area for conducting in situ bioremediation field research. Bioremediation efforts at the Area 3 site involved treatment of contaminated groundwater to optimize subsurface conditions for U(VI) reduction by indigenous microorganisms upon ethanol biostimulation (1). Concurrent cultivation efforts led to isolation of the anaerobic bacterium, *Anaeromyxobacter* sp. Fw109-5, from a ferric iron enrichment of subsurface sediments collected from monitoring wells Fw109 located outside the treatment zone. While *Anaeromyxobacter* sp. Fw109-5 was isolated from Area 3, further evolutionary distance analysis indicated that sequences detected in the ethanol biostimulation treatment zone belonged to another distinct cluster of *Anaeromyxobacter* populations, whereas *Anaeromyxobacter* sp. Fw109-5 was more closely related to a cluster of *Anaeromyxobacter* sequences detected at another IFC treatment area that used alternative substrates for biostimulation (2). These results demonstrated that a diverse *Anaeromyxobacter* population exists at the IFC site and comparative genome analysis provides relevant information about their physiological capacity, which is crucial for future bioremediation designs.

The genome sequence for *Anaeromyxobacter* sp. Fw109-5 was determined with the Sanger sequencing method by the US DOE Joint Genome Institute (JGI). Genes were identified at Oak Ridge National Laboratory using the genome annotation pipeline based on the Prodigal gene prediction algorithm (3), followed by a round of manual curation using JGI’s GenePRIMP pipeline (4). Additional gene prediction analysis and functional annotation were performed within the Integrated Microbial Genomes (IMG) platform (https://img.jgi.doe.gov/cgi-bin/w/main.cgi) (5). Completed microbial genomes by JGI have been curated to close all gaps with greater than 98% coverage of at least two independent clones. Each base pair has a minimum quality value of 30 with a total error rate of less than 1/50,000. The genome sequence of *Anaeromyxobacter* sp. Fw109-5 is approximately 5.28 Mb in size, with a G+C content of 73.5%, and contains 4,549 putative genes, two ribosomal RNA operons (16S-23S-5S), 49 tRNA genes, and 4 other RNA genes. Of the 4,549 putative genes identified, 4,490 were protein-coding genes with functions predicted for 3,157 genes.

Other *Anaeromyxobacter* isolates used chlorinated phenols, oxygen, nitrate, nitrite, nitrous oxide, ferric iron, arsenate, manganese dioxide, U(VI), and Tc(VII) as electron acceptors (6–11). Unlike *Anaeromyxobacter dehalogenans* 2CP-C (GenBank accession number CP000251.1), *Anaeromyxobacter* Fw109-5 lacks putative reductive dehalogenase genes. Like its relatives, *Anaeromyxobacter* Fw109-5 lacks nir genes, but it has other genes associated with the denitrification pathway (12). Genome comparison of *Anaeromyxobacter* sp. Fw109-5 to other known metal reducers as well as related *Anaeromyxobacter* isolates will reveal
unique traits and lead to an understanding of the contributions of these organisms for bioremediation.

Nucleotide sequence accession numbers. *Anaeromyxobacter* sp. Fw109-5 was assigned with the GenBank identification number CP000769.1 and NCBI reference sequence NC_009675.1.

ACKNOWLEDGMENTS

This work was conducted by Ecosystems and Networks Integrated with Genes and Molecular Assemblies (ENIGMA) (http://enigma.lbl.gov), a Scientific Focus Area Program at Lawrence Berkeley National Laboratory. This work was supported by the Office of Science, Office of Biological and Environmental Research of the U. S Department of Energy Joint Genome Institute, a DOE Office of Science User Facility, under contract number DE-AC02-05CH11231.

REFERENCES

