The genus *Pseudomonas* is known to perform diverse tasks, including plant growth promotion, environmental bioremediation, and biological control of various pathogens (1–3). Due to these beneficial properties, the genus *Pseudomonas* has attracted increased scientific interest in recent years. Due to the similarities of the 16S rRNA gene sequences, *Pseudomonas migulae* has been assigned into the *Pseudomonas fluorescens* group (4).

The strain of *Pseudomonas migulae* ES3-33 was isolated from soil samples (soil Se of >20 mg/kg) in an Se mine area in Enshi, southwest China. The 16S rRNA sequences of *Pseudomonas migulae* ES3-33 revealed that it belonged to the species *Pseudomonas migulae*, with sequence similarities of 99.56% using the EzTaxon server (5, 6). Chromosomal DNA was purified from isolates by using a Gentra Puregene Yeast/Bac.Kit (Qiagen). The draft genome sequence of *Pseudomonas migulae* ES3-33 was determined using the information from GenBank and RAST (9).

The size of the draft genome sequence is 6,075,381 bp, with an average GC content of 59.7%, and the longest contig size assembled is 389,672 bp. The genome consists of 5,404 protein-coding sequences that were assigned predicted functions, 58 tRNA genes, and 10 rRNA genes.

*Pseudomonas migulae* ES3-33 can rapidly reduce selenite to red selenium nanoparticles and is highly selenite resistant, with an MIC of 150 mM. The genome was analyzed and shown to contain potential selenite reductases. Two gluthathione reductases (GR), a metallo-chloroform dehalogenase (DcR), an *A. aerogenes* serine hydroxymethyltransferase (SHMT) protein, two nitrite reductases which have previously been reported to reduce selenite were identified on the genome (10–15). An increased presence of copper resistance determinants was observed, possibly due to contamination of the Se mine with heavy and transition metal resistance mechanisms, and this might improve our fundamental understanding of multidrug, heavy and transition metal resistance mechanisms, and this knowledge may be applicable to bioremediation.

**Nucleotide sequence accession numbers.** This whole-genome shotgun project has been deposited at DDBJ/EMBL/GenBank under the accession no. JZRI00000000. The version described in this paper is version JZRI01000000.

**ACKNOWLEDGMENTS**

This work was supported by the Natural Science Foundation of China (NSFC 31470227) and the Center for Environmental and Agricultural Microbiology (CREAM) funded by the Villum Kann Rasmussen Foundation.

**REFERENCES**


