Genome Sequence of *Bacillus butanolivorans* K9ᵀ (DSM 18926), an *n*-Butanol-Consuming Bacterium Isolated from Soil

Jie-ping Wang, Bo Liu, Guo-hong Liu, De-ju Chen, Rong-feng Xiao, Xue-fang Zheng, Huai Shi, Ci-bin Ge

Agricultural Bio-Resources Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian, China

Bacillus butanolivorans K9ᵀ (DSM 18926) is a Gram-positive, spore-forming, strictly aerobic, and *n*-butanol-consuming bacterium. Here, we report the 5.68-Mb genome sequence of *B. butanolivorans* K9ᵀ, which is the first genomic information of this species that will provide useful information for the genomic taxonomy and phylogenomics of *Bacillus*-like bacteria.

The type strain K9ᵀ (along with the strains K105, K1012A, and K101) was isolated from soil in Lithuania and was named *B. butanolivorans* sp. nov., due to its ability to tolerate high concentrations of *n*-butanol and to use it as a sole carbon source (1). Its phylogenetically close neighbors are *Bacillus simplex* (2) and *Bacillus muralis* (3) according to their 16S rRNA gene sequence similarity. The best growth of *B. butanolivorans* K9ᵀ was achieved at 25°C and pH 7.0 in medium containing 1% (wt/vol) NaCl (1). Notably, there is no other information about *B. butanolivorans* outside its taxonomical description information so far. Given no available genomic information of *B. butanolivorans*, its type strain K9ᵀ was selected as one of the research objects in our “genome sequencing project for genomic taxonomy and phylogenomics of *Bacillus*-like bacteria.” Here, we presented the high-quality draft genome sequence of *B. butanolivorans* K9ᵀ (DSM 18926).

The genome sequencing of *B. butanolivorans* K9ᵀ (DSM 18926) was performed via the Illumina Hiseq 2500 system. Two DNA libraries with insert sizes of 500 and 5,000 bp were constructed and sequenced. After filtering of the 1.22-Gb raw data, the 1.18-Gb clean data was obtained, providing approximately 200-fold coverage. The reads were assembled via the SOAPdenovo software version 1.05 (4), using a key parameter K setting at 77. Through the data assembly, 17 scaffolds with total length 5,682,344 bp were obtained, and the scaffold N₅₀ was 4,601,026 bp. The average length of the scaffolds was 334,255 bp, and the longest and shortest scaffolds were 4,601,026 bp and 561 bp, respectively. A total of 90.60% clean reads could be aligned back to the genome, which covered 99.72% of the sequence.

The annotation of the genome was performed using the NCBI Prokaryotic Genomes Automatic Annotation Pipeline (PGAAP) (http://www.ncbi.nlm.nih.gov/genome/annotation_prok/) utilizing GeneMark, Glimmer, and tRNAscan-SE tools (5). A total of 5,278 genes were predicted, including 4,994 coding sequences (CDS), 183 pseudo genes, 92 tRNAs, and 8 rRNA genes. There were 3,773 and 2,855 genes assigned to COG and KEGG databases, respectively. The average DNA G+C content was 37.91%, agreeing with the value 37.4 mol% acquired by HPLC determination (1).

Nucleotide sequence accession numbers. This whole-genome shotgun project has been deposited at DDBJ/EMBL/GenBank under the accession no. LGYA00000000. The version described in this paper is version LGYA01000000.

ACKNOWLEDGMENTS

This work was supported by the National Natural Science Foundation of China (grant 31370059); the Scientific Research Foundation for Returned Scholars, Fujian Academy of Agricultural Sciences (grant YJRC2014-1); and Fujian Special Fund for Scientific Research Institutes in the Public Interest (grant 2014R1101016-11).

REFERENCES