Complete Genome Sequence of *Bartonella ancashensis* Strain 20.00, Isolated from the Blood of a Patient with Verruga Peruana

Jun Hang,a Kristin E. Mullins,b,c Robert J. Clifford,b Fatma Onmus-Leone,b Yu Yang,a Ju Jiang,c Mariana Leguia,d Matthew R. Kasper,d Ciro Maguña,a Emil P. Lesho,a Richard G. Jarman,a Allen L. Richards,e David Blazesb

Walter Reed Army Institute of Research, Silver Spring, Maryland, USAa; Uniformed Services University of the Health Sciences, Bethesda, Maryland, USAa; Naval Medical Research Center, Silver Spring, Maryland, USAa; U.S. Naval Medical Research Unit No. 6, Lima, Peru; Universidad Peruana Cayetano Heredia, Lima, Peru.

J.H., K.E.M., and R.J.C. contributed equally to this work.

Here we present the complete genome sequence of *Bartonella ancashensis* strain 20.00, isolated from the blood of a Peruvian patient with verruga peruana, known as Carrion’s disease. *Bartonella ancashensis* is a Gram-negative bacillus, phylogenetically most similar to *Bartonella bacilliformis*, the causative agent of Oroya fever and verruga peruana.

M
embers of the genus *Bartonella* are Gram-negative bacilli that are found worldwide and are associated with animal and human diseases (1). The most common diseases associated with *Bartonella* species are trench fever, cat scratch disease, and the biphasic illness Carrion’s disease, which are caused by *B. quintana*, *B. henselae*, and *B. bacilliformis*, respectively (2–4). More recently, *B. henselae* and *B. quintana* have been associated with bacillary angiomatosis, and more than eight *Bartonella* species have been associated with either febrile illnesses or endocarditis (2, 4, 5).

In a 2003 study involving 127 patients with verruga peruana in the Peruvian Ancash mountain area, two patients were found to be infected with a *Bartonella* species distinct from any known *Bartonella* species. This determination was based on the sequences of the *gltA*, *ropB*, *fsZ*, *groEL*, and *rrs* genes and the 16S-23S intergenic internal transcribed spacer (ITS) region. The genetic differences and culture characteristics of the strain meet the taxonomic criteria to classify this non-*B. bacilliformis* pathogen as a new species, designated *Bartonella ancashensis*. The nomenclature has been accepted by the International Journal of Systematic and Evolutionary Microbiology, and *B. ancashensis* strain 20.00 was accepted by both ATCC and DSMZ for archiving and distribution for research use (6–8).

The genome of *B. ancashensis* strain 20.00 was sequenced using Roche 454 next-generation sequencing technology (Roche 454 Life Sciences, Branford, CT). A total of 198,990 filtered reads consisting of 57.4 Mb of data were assembled into 94 contigs with average sequence coverage of 41.7× using GS Assembler software (Newbler) version 2.5.3. Final assembly was verified using a whole-genome AffIII restriction map generated with the Argus system (OpGen, Gaithersburg, MD) (9). *B. ancashensis* strain 20.00 has a circular genome of 1,466,048 bp and has a G+C content of 38.4%, which is similar to the genome of the *Bartonella* prototype strain, *B. bacilliformis* KC583 (NC_008783.1), which is 1,445,021 nucleotides in length with a G+C content of 38.2%.

Whole-genome annotation was performed using RAST (Rapid Annotation using Subsystem Technology) (http://www.nmpdr.org/FIG/wiki/view.cgi/FIG/RapidAnnotationServer); structural and functional annotation was completed using the IGS Annotation Engine (http://ae.igs.umaryland.edu/cgi/index.cgi). Genome annotations were reviewed and finalized using Genome Viewer (http://www.nmpdr.org/FIG/wiki/view.cgi/FIG/GenomeViewer) and Manatee (http://manatee.sourceforge.net/) (10, 11). The *B. ancashensis* strain 20.00 genome contains 1,346 putative protein-encoding genes, of which 79.1% are found to have homologs in *B. bacilliformis*. Like *B. bacilliformis*, *B. ancashensis* strain 20.00 encodes flagellar proteins. However, unlike *B. bacilliformis*, *B. ancashensis* strain 20.00 encodes VirB/D4 type IV secretion system proteins most similar to those of *B. claridgeiae* and *B. rochalimae*, both of which have been implicated in human disease. Further, *B. ancashensis* possesses a family of virulence-modulating proteins which are present only in *B. australis* and human-pathogenic *Leptospira* species (12–16).

Here we have reported the first complete genome sequence for the new pathogen *B. ancashensis*. Further *B. ancashensis* genome studies and comparisons will elucidate factors involved in virulence and pathogenicity of not only *B. ancashensis*, but also the *Bartonella* genus as a whole.

Nucleotide sequence accession number. This whole-genome shotgun project has been deposited at DDBJ/EMBL/GenBank under the accession number CP010401.

ACKNOWLEDGMENTS

J.H., M.L., E.P.L., R.G.J., D.B., and A.L.R. are military service members or employees of the U.S. Government and this work was prepared as part of their official duties.

This work is supported by the Global Emerging Infections Surveillance and Response System, a Division of the Armed Forces Health Surveillance Center. The views expressed in this article are those of the author and do not necessarily reflect the official policy or position of the Department of the Army, the Department of the Navy, the Department of Defense, nor the United States Government.
REFERENCES

