First Genome Sequence of Wild Onion Symptomless Virus, a Novel Member of Potyvirus in the Turnip Mosaic Virus Phylogenetic Group

Kazutoshi Ohshima, a,b Savas Korkmaz, c Shinichiro Mitoma, a Rei Nomiyama, a Yuki Honda a

Laboratory of Plant Virology, Department of Applied Biological Sciences, Faculty of Agriculture, Saga University, Saga, Japan; a; The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima, Japan; b; Department of Plant Protection, Faculty of Agriculture, University of Canakkale Onsekiz Mart, Canakkale, Turkey

The nearly complete genome sequence of a new species of potyvirus was obtained from the symptomless wild onion (Allium sp.) in Turkey. This virus has less than 67% nucleotide sequence identities over the polyprotein to other known potyviruses. We propose the name wild onion symptomless virus for this novel potyvirus.

Received 23 June 2016 Accepted 27 June 2016 Published 18 August 2016


Copyright © 2016 Ohshima et al. This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license.

Address correspondence to Kazutoshi Ohshima, ohshimak@cc.saga-u.ac.jp.

One aim of our recent studies is to find new viral species within the group of viruses related to turnip mosaic virus (TuMV) (1) to assess evolutionary relationships between the viruses. TuMV, Japanese yam mosaic virus (JYMV), narcissus late season yellows virus (NLSYV), narcissus yellow stripe virus (NYSV), and scallion mosaic virus (ScaMV) are species included in the TuMV group in the potyvirus phylogeny. Potyviruses are species of the genus Potyvirus in the family Potyviridae (2, 3). Their genome is a positive-sense single-stranded RNA molecule of approximately 10,000 nucleotides (nt), containing two open reading frames (ORFs) (2, 4, 5).

Allium plants, which are important hosts of potyviruses because these are susceptible to many potyviruses (6), were surveyed for potyvirus infection in the autumn of 2012 in Turkey. Symptomless wild onion plants were collected in the front yard of the fruit farm of Iznik. The shape of the wild onion plants was very similar to that of Japanese/Chinese garlic (Allium macrostemon), which is known to be distributed only in East Asia (1).

The extracted RNAs from wild onion leaves were reverse transcribed, and the cDNAs were amplified using the Prime-Script II high-fidelity one-step reverse transcription-PCR (RT-PCR) kit (TaKaRa Bio, Ohtsu, Japan). RT-PCR products of approximately 2,100 bp from the nuclear inclusion b protein gene to the 3′-end poly(A) [NIb-poly(A)] region were amplified with potyvirus-specific primer pairs modified from the primers described by Zheng et al. (7) and Ohshima et al. (1), POTYNIBNOT5P (5′-GGGGCGGCCGCATATGGGGTGAGAGAGG-3′) and Tu3T9 M (5′-GGGGCGGCCGCATATGGGGTGAGAGAGGATTTARRM GCGAGAAGACGCG-3′) were synthesized, referring to the consensi of sequences of viruses in TuMV phylogenetic group. Note that Tu3T5P is a degenerate primer of the 5′ end of TuMV group virus genomes. At least three clones were obtained for each RT-PCR product and sequenced. The overlapping regions of RT-PCR products were at least 400 bp, and clones that have no mismatch in the regions were assembled to obtain full-genome sequences.

The complete two genome sequences (only three mismatches), excluding a 25-nt 5′-Tu3T5P primer sequence used for amplifying the genome, were 9,369 nt long. The polyprotein sequence comparisons using EMBOSS Needle (http://www.ebi.ac.uk/Tools/psa/emboss_needle/) between the WoSV-TUR256-1 and TuMV group virus sequences, TuMV (accession numbers AB701690 and AB093598) (8, 9), NLSYV (accession numbers JQ326210, NC_023628, and JX156421) (10, 11), ScaMV (accession numbers JQ395042) (12, 13), and JYMV (accession numbers KJ789140, KJ701427, NC_003399) (14), and JYMV (accession numbers KJ789140, KJ701427, NC_003399, and AB016500) (15–17), showed 60 to 67% nucleotide identities. Hence, this virus, wild onion symptomless virus (WoSV), seems to be a distant member of other known potyviruses.

Accession number(s). The sequence has been deposited in GenBank/EMBL/DDBJ under the accession numbers LC159494 and LC159495.

ACKNOWLEDGMENTS

We thank Yosuke Tashiro (Emeritus Faculty, Saga University, Japan) for his careful advice on wild onion classification.
This work was funded in part by Saga University and supported by JSPS KAKENHI grant numbers 24405026 and 16K14862.

FUNDING INFORMATION
This work, including the efforts of Kazusato Ohshima, was funded by Japan Society for the Promotion of Science (JSPS) (KAKENHI 24405026 and 16K14862).

REFERENCES