Complete Genome Sequence of *Mycobacterium chimaera* Strain AH16

Nabeeh A. Hasan,a Jennifer R. Honda,b,c Rebecca M. Davidson,a L. Elaine Epperson,a Matthew J. Bankowski,a,f Edward D. Chan,b,d,g Michael Strong,a,d

Center for Genes, Environment and Health, National Jewish Health, Denver, Colorado, USA; Department of Medicine, National Jewish Health, Denver, Colorado, USA; Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado, USA; Computational Bioscience Program, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado, USA; Diagnostic Laboratory Services Inc., Aiea, Hawaii, USA; Departments of Pathology and Tropical Medicine, Medical Microbiology and Pharmacology, John A. Burns School of Medicine, University of Hawai‘i at Manoa, Honolulu, Hawaii, USA; Denver Veterans Affairs Medical Center, Denver, Colorado, USA

Mycobacterium chimaera is a nontuberculous mycobacterial species that causes cardiovascular, pulmonary, and postsurgical infections. Here, we report the first complete genome sequence of *M. chimaera*. This genome is 6.33 Mbp, with a G+C content of 67.56%, and encodes 4,926 protein-coding genes, as well as 74 tRNAs, one ncRNA, and three rRNA genes.

Whole-genome alignments of *M. chimaera* AH16 and six MAC genomes revealed 511,189 variable single nucleotide polymorphisms (SNPs), including: 459,672 SNPs compared to *M. avium* subsp. *hominis suis* TH135; 64,709 SNPs compared to *M. intracellulare* ATCC 13950; 50,875 SNPs compared to *Mycobacterium* sp. MOTT 36Y; 49,805 SNPs compared to *M. yongonense* 05-0390; and 49,524 SNPs compared to *Mycobacterium* sp. H4Y. Comparing the *M. chimaera* AH16 genome against the *M. avium* subsp. *hominis suis* TH135, *M. intracellulare* ATCC 13950, *M. yongonense* 05-0390, *Mycobacterium* sp. MOTT 36Y, and *Mycobacterium* sp. H4Y genomes, the average nucleotide identities (ANIs) were 85.55%, 96.87%, 97.14%, 97.16%, and 97.22%, respectively. The limited SNP variation (0.78 to 7.26% of the genome) and ANI values observed between *M. chimaera* AH16 and MAC species suggests that the non-*M. avium* MAC species have limited genomic variation. Furthermore, intraspecies genome comparisons of *M. chimaera* AH16 to *M. chimaera* MCIMRL6, MCIMRL4, and MCIMRL2 (accession nos. LJHN00000000, LJHM00000000, and LJHL00000000) have 99.14%, 99.11%, and 99.18% ANIs, respectively, which are within the 95 to 96% cutoff for species boundaries (11).

Accession number(s). The genome sequence of *M. chimaera* AH16 is deposited in NCBI GenBank under the accession numbers CP012885 to CP012888.

ACKNOWLEDGMENTS

N.A.H. acknowledges the Institute for Genome Sciences, University of Maryland for PacBio sequencing. M.S. acknowledges support from the Colorado Bioscience Discovery Evaluation Grant Program, the Potts Memorial Foundation, a Boettcher Foundation Webb-Waring Award, and the Cystic Fibrosis Foundation. M.S., R.M.D., and L.E.E. acknowledge support from the NTM Center of Excellence at National Jewish Health. J.R.H. acknowledges the Division of Pulmonary and Critical Care Medicine at the University of Colorado Anschutz Medical Campus and the Shoot for the Cure Foundation.
FUNDING INFORMATION
This work, including the efforts of Michael Strong, was funded by Colorado Bioscience Discovery Evaluation Grant Program. This work, including the efforts of Michael Strong, was funded by Potts Memorial Foundation. This work, including the efforts of Rebecca M. Davidson, L. Elaine Epperson, and Michael Strong, was funded by NTM Center of Excellence. This work, including the efforts of Jennifer R. Honda, was funded by Shoot for the Cure Foundation. This work, including the efforts of Michael Strong, was funded by Cystic Fibrosis Foundation (CF Foundation). This work, including the efforts of Michael Strong, was funded by Boettcher Foundation. This work, including the efforts of Jennifer R. Honda, was funded by CU | University of Colorado Denver (UC Denver).

REFERENCES